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$ Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, 
USA 

Received 19 May 1989 

Abstract. In this and a subsequent paper a short-range Potts spin glass is studied. A stable, 
non-marginal, mean-field theory is found with one level of replica symmetry breaking and 
a discontinuous transition for p >  4. A complete stability analysis is provided, and two 
different correlation lengths are found above eight dimensions. The fluctuations in the 
ordered phase around this solution are incorporated in a renormalisation group approach 
and it is found that for a small range of the parameters they restore scaling close to the 
upper critical dimension. For the three-state case it appears that fluctuations destroy the 
stability of the solution for d S 8 and cause the system to undergo a first-order phase 
transition. Non-universal corrections to the equation of state above the upper critical 
dimension are discussed. 

1. Introduction 

Considerable attention has been devoted in recent years to Potts spin glasses [l-61. 
There are several factors that make these systems interesting. 

(i) Certain experimental systems like mixed ortho-para hydrogen crystals [ 7 ] ,  
electric dipole glasses [8] and  orientational glasses like K( Br, C n )  mixed crystals [9] 
d o  not have the reflection symmetry of an  Ising system. A random Potts system seems 
a more reasonable starting point to model them. 

(ii) Although the model possesses both randomness and frustration, which are now 
believed to be necessary ingredients of spin glass behaviour (for a review of spin 
glasses, see [lo]),  the degree of frustration of Potts random systems is smaller than 
their Ising counterpart [ l l ] ;  for example, the weight of the frustrated loop configur- 
ations decays exponentially with the length of the loop, while in the lsing spin glasses 
( I S G ) ,  frustration is present at all lengths. It is reasonable to think that some of the 
simplifying features of the mean-field solution described below are connected with 
this fact. 

(iii) For p < 4  ( p  being the number of equivalent Potts states) the mean-field 
solution obtained shows a continuous transition to a spin-glass phase which for a 
certain range of temperature is stable, in the sense that all the eigenvalues of fluctuations 
about it are strictly positive. Although the replica symmetric solution is unstable in 
the Potts glass, as in the case of the ISC [12], the stable mean-field solution requires 
a much simpler ansatz of replica symmetry breaking than its counterpart in the ISG 

[ 131, and  does not have the high degree of marginality that the latter presents. Because 
of this fact, the effect of the fluctuations in the ordered phase can be explicitly 
incorporated. 
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( iv)  For p > 4  the mean-field theory indicates a transition to a spin-glass phase 
with a discontinuous jump  of the Edwards-Anderson order parameter [14] at Tg .  
Although at the transition all the perturbative fluctuations remain finite this is not a 
regular first-order transition. Only the second derivative of the free energy is discon- 
tinuous at T,; in particular there is no latent heat at the transition. Using an extension 
of the Thouless-Anderson-Palmer [15] (TAP) approach to this model, it has been 
argued [5] that this is related to the fact that the number of states into which the system 
can freeze is exponentially large at T,, and, thus it does not become more ordered in 
a statistical sense when it freezes. 

(v)  It is interesting to note that this kind of discontinuous transition is not exclusive 
of the PG, but appears also in the p-spin-interaction spin-glass models [ 161 with p > 2 
and quadrupolar glass models [17], and  also in the ‘simplest spin glass’ [18] and the 
random-energy model [ 191, suggesting some kind of universality. 

(vi)  Another interesting feature is that for the discontinuous situation ( p  > 4), both 
the TAP approach and a dynamical study of the model [4] show the existence of another 
transition at a temperature T A >  T,, signalled by a slowing down of the dynamical 
correlations as T +  T i .  Below TA the system gets stuck in a metastable state. In  the 
mean-field theory the barriers separating these metastable states are infinitely high, 
and  a transition from ergodic to non-ergodic behaviour takes place. It will be shown 
below that the transition can be located in the static mean field theory as the point 
where the free energy is maximised when one of the variational mean-field parameters 
remains fixed at its physical endpoint. In  this sense, a connection has been established 
[4, 16,201 between the dynamical theories of the PG model and the p-spin-interaction 
model and theories of the structural glass transition. For example, it is usual to have 
in real glassy systems a temperature characterised by an important change in the 
transport properties (showing up in the slope of the Arrhenius plot of the viscosity), 
and a laboratory transition at a lower temperature in the metastable region, where the 
change in the heat capacity occurs, as in the PG case. 

(vii) Because of the lack of equivalence between ferromagnetic and antiferromag- 
netic bonds with respect to their ability to constrain the states of coupled spins, the 
phase diagram is more complicated than the ISG [2]. In  particular, for p > 4 the system 
will freeze into a ferromagnetic state unless the average value of the random distribution 
of the bonds is negative (antiferromagnetic) and  bigger in absolute value than some 
Jo .  Throughout this work we will assume that this condition is always met. 

(vii i)  The phase diagram exhibits more richness than the ISG and has, for example, 
mixed phases (longitudinal ferromagnetic ordering and transverse spin-glass behaviour) 
like the ones appearing in the vector spin glass [21], but most of its details are still 
not fully understood. 

The relative simplicity of the mean-field solution for the spin-glass phase allows 
us to obtain explicitly the different types of fluctuating eigenmodes. Some of the 
corresponding eigenvalues, among them the ones which reduce in the p = 2 case to 
the ‘replicon’ [223 modes which destabilise the Sherrington-Kirkpatrick ( S K )  solution 
[lo,  121, although they are stable here, are slow modes whose fluctuations decay 
spatially with a correlation length (,- ( T -  Tg)-’. The other modes, which we call fast 
modes, are associated with correlation lengths tF - ( T - TJ’”. 

In renormalisation group theory, the above failure of conventional scaling is due  
to a dangerous irrelevant variable. When the effect of the fluctuations is included, two 
different behaviours are found below eight dimensions (which is the upper critical 
dimension for this aspect of the model). For p > pO = 3.77 the fluctuations are shown 
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to restore the scaling behaviour at d = 6  by renormalising the slow fluctuations [ 2 3 ] .  
For p < p o ,  and in  particular for the physical case p = 3 ,  we show that the fluctuations 
destabilise the solution (the trajectories in parameter space flow away from the region 
of stability); this probably implies a fluctuation-driven first-order transition [24]. 

These ‘replicon’ modes, even at the mean-field level, vanish at the ‘dynamical’ 
transition ( p  > 4), establishing a connection between the static and  dynamic theories [5]. 

Using the knowledge of the eigenvalues of fluctuations, the corrections (to one-loop 
order) to the free energy and  the equation of state can be calculated. Already between 
six and  eight dimensions the effect of the remaining non-universal corrections also 
suggests the tendency to order by undergoing a first-order phase transition. This 
supports the picture that, as in the regular Potts models [25], in the Potts glass the 
critical p above which the transition changes from continuous to discontinuous is 
dimension dependent. 

The plan of this paper is as follows. In B 2 we introduce the model and obtain the 
effective Hamiltonian. In § 3 we discuss the replica symmetric theory and  its stability. 
In 0 4 a replica symmetry breaking (RSB)  solution is presented, and we discuss some 
of its features. In  0 5 we consider the fluctuations around that solution, in the case of 
the continuous and the discontinuous transition. 

2. The model 

Our starting point is the simplex representation [26] of the Potts model in which in 
each site i of the lattice there is a spin S, which can be in one of the p different states 
{ e ’ }  s = 1 ,2 , .  . . , p .  Each state is represented by a ( p  - 1)-dimensional vector, and  they 
point in  the direction of the vertices of a hypertetrahedron in a ( p  - I)-dimensional 
vector space. 

The vectors satisfy the following relations: 

f: e : = o .  
, = I  

The Hamiltonian of the Potts glass is 
“ - 1  

(2.3) 

(2.4) 

where the sum is over all nearest-neighbour pairs ( i , j ) .  The bonds J,! are randomly 
distributed, with a probability distribution 

1 
J 2 r J -  

P(J,,) ==exp[-(J,, -J,,)’/25’]. 

If we consider the quenched problem, where the disorder does not change in time (at 
least in the time scale of thermal equilibration), the averages over disorder configur- 
ations have to be taken on extensive quantities like the free energy, and not the partition 
function. This difficulty can be solved by using the replica method [14] in which the 
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disorder-averaged partition function is evaluated for an  n-fold replicated system, and  
then the free energy is obtained from its analytic continuation by - 

Z" - 1 
F =  - k T  l i m p  

"-0 n 

where overbars mean disorder averages. 

function is 
Averaging over the distribution of the random bonds, the replicated partition 

where S% stands for the a component of the a replica of the spin at site i ,  and use 
of the relation 

( e ' .  e Y ) ' = ( p - 2 ) e  ' a  e' + p -  1 

was made, and  irrelevant constants were neglected. The random variables J,, have 
been eliminated at the price of coupling different replicas. A temperature-dependent 
enhancement in the ferromagnetic ordering field appears for p > 2 .  The condition 
J o / J  < 1 is necessary in the S K  solution to ensure that the system freezes from the 
disordered phase into a spin-glass phase and  not into conventional ferromagnetic 
order. The equivalent condition here would be 

Jo p - 2  J -+- -< 1 
J 2 k T  

At low enough temperature magnetic order will always be preferred. At the glass 
transition temperature (kT,  = J in the infinite-range case) this condition becomes 

Jo 4 - P  -<-. 
J 2  ( 2 . 7 )  

We see that for p 2 4 an  antiferromagnetic average of the bonds is necessary in order 
to freeze into a glassy phase; otherwise, it has been shown that the system orders 
ferromagnetically [2 -31 .  In this paper we will assume that the condition ( 2 . 7 )  is satisfied 
and we will focus on the spin-glass transition by setting the ferromagnetic order 
parameter to zero. 

We disentangle the sum over spins at different sites by the usual Hubbard- 
Stratonovich transformation [ 2 1 ]  introducing variables Qghp to obtain (neglecting 
multiplicative constants) 

I,a,h 

where K,, = ( J / k T ) '  for nearest neighbours and  zero otherwise, and ( a ,  p )  means that 
each pair of different replicas should be included once. 

We can now expand the second exponential keeping terms to fourth order (which 
are necessary to check the stability of the solution), evaluate the thermodynamic trace 
using the identities ( 2 . 1 ) - ( 2 . 3 )  and re-exponentiate the result to obtain: 
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all 
different 

We introduce the Potts tensors 

F~~~~ = f: e;ebe:e;. (2.10b) 

Some useful relations that these tensors satisfy are listed in appendix 1 .  We symmetrised 
the sums over replica variables by assuming 

as suggested by the steepest descents result Q:hp - (SzSf) that can be obtained from 
(2.8). 

The necessary steps for obtaining the effective Hamiltonian are a simple generalisa- 
tion of the standard procedure for obtaining the continuum limit (see for example 
[22]). The first exponential in (2.8) is diagonal in the Fourier transform space, and  

S E I  

QfhP = QfZ (2.11) 

when we are interested in the transition region dominated by the long-range fluctuations. 
( z  is the coordination number and a are vectors joining one site of the lattice to its 
nearest neighbours.) Replacing the sums over sites (X, + ( l / a d )  5 ddx)  and using as 
unit of length the lattice spacing in a hypercubic lattice, we obtain the partition function 
as 

where the effective Hamiltonian functional is 

A simple rescaling leads to the standard form 

(2.12) 

(2.13) 
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where t = z - ( k T / J ) '  and the constants w,  = w P  and y have the initial values ( J z / ~ T ) ~  
and ( J z /  k T ) 4  respectively. The subindices w ,  and w p  indicate that the first cubic term 
also appears in an  Ising spin glass [9], but the second one vanishes there due to the 
reflection symmetry of that model (see equation (3.1)). Its presence here is a feature 
of the Potts nature of the spins. At the mean-field level (and  also when only fluctuations 
for d > 6 are considered) there is no need to distinguish between them, but below 
d = 6 they are renormalised in different ways [27,28]. 

3. Replica-symmetric (RS) mean-field theory 

As usual, we look for a stationary point of the effective Hamiltonian functional (2.13) 
with the order parameters constant in space. Furthermore, we impose the ansatz 
Q:f(x) = qoP6,,,, i.e. we search for a homogeneous isotropic spin-glass phase. Inserting 
this in the free energy functional and  performing the sum over Potts variables with 
the help of relations (A1.4), (A1.6) and  (A1.8), we obtain 

We look for a replica-symmetric solution by assuming qmP = q for all CY f ,!3. We obtain 

(3.2) I -2 q4[ 12( p - 2)( n - 2) + 6( n - 2)(n - 3) + ( p Z - 6 p  + 611 
48 

) (3.3) = ( p  - 1) ( -4 q2  +y wq3 -- q4( p ?  - 3oP + 90) + O(45)  t 6 - p  Y 
( n - 0 )  48 

The saddle point equation associated with the expression (3.3) predicts a second-order 
phase transition at t ,  = 0 for p < 6. Close to t ,  ( t  << l ) ,  

(3.4) 

For p > 6, where the cubic term changes sign, a first-order transition is obtained. To 
perform the stability analysis of this solution we write 

a:,Pcx, = 4 S U h  + R:f(x) 

and we expand (2.13) to second order in the fluctuations R. The fn(n - l ) ( p -  l ) ?  x 
$n(n - l ) ( p  - 1)' stability matrix obtained using the relations (A1.3), ( A I S ) ,  (A1.7) 
and  (A1.9) is 

(3.5) Q( M :f; + M :ti:) 
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1 -k { [ wq +yq2 ( ( n  - 2 )  +- - 2 ) 3  A o r a y v  + 3YqZB,p,,, 
P 2 

with the replica matrices given by 

( 3 . 7 6 )  

( 3 . 7 c )  

The eigenvectors and eigenvalues (with their degeneracies) are explicitly obtained in 
appendix 2,  as they will be useful also to discuss the stability of the replica-symmetry- 
breaking mean-field solution. Inserting the value of the order parameter close to the 
transition, ( 3 . 4 )  in the eigenvalues found there ( A 2 . 4 a ) - ( A 2 . 4 ~ ) ,  we find 

( 3 . 8 b )  

The Potts diagonal replicon mode is unstable at order t for any p > 2 .  The Potts 
vector replicon mode is unstable only for p > 4. All the other modes, not shown here, 
are stable for the whole range of validity of the solution 2 < p < 6. 

In the Ising case ( p  = 2 )  the Potts indices disappear from the problem and  only 
the Potts diagonal modes (DB, DA, DR) survive. We obtain there the three families of 
eigenvectors discussed by de  Almeida and Thouless. In that case, the instability in 
the DR mode only appears at  the order t’, as can be seen in ( 3 . 8 ) .  

In the Potts case the instability coming from the replicon modes is stronger, as 
pointed out previously [2]. This should be contrasted with the lower level of replica 
symmetry breaking found in the stable solution in the next section. 

4. Replica-symmetry-broken solution 

Following Gross, Kanter and  Sompolinsky [ 11, we try a replica-symmetry-breaking 
( RSB) ansatz for the mean-field { Q”’} as follows. Group the n replicas in groups of 
m, where m is also a parameter (between n and 1 )  to be located by the saddle point 
equations. Then, 

if ( a ,  p )  belong to the same group 
( 4 . 1 )  to otherwise. 

qap = 

This coincides with the first level in the Parisi RSB scheme [ 1 3 ] ,  which is believed to 
be the correct solution to the long-range p = 2 Sherrington-Kirkpatrick (SK) model. 
Just one level of RSB is known to give the correct solution for the p-spin interactions 
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( p  + a) version of the S K  problem [ 181. I t  also locates a stable solution for the finite-p 
version of that model [4]. 

Using the ansatz (4.1) in (3 .1)  we obtain 

(4.2) 

In writing this expression we used the fact that the saddle point equation with respect 
to qo has the solution qo = 0 to all orders in q. This means that the replicas overlap 
with strength 9, or  they d o  not overlap at all. The saddle point equations are 

1 Y q 4  +- [12( p -2) (  m - 2 )  +6(m -2) (m - 3 )  + ( p 2 - 6 p  + 6 ) ]  . 
48 

Yq' +- (p'-3Op +90+6m'- 54m + 12mp) 
6 

For the case p < 4 they have the solution 

l o  t < O  

t y t 2  g p z  - 14p +? 
$7 + o( t 3 )  t > O  

w(4-p)  w ( 4 4  

m =--- + O( t 2 ) .  
p - 2  yt (p2+12p-36)  

2 w 2  8(4-p)  

(4.3) 

(4.4) 

( 4 . 5 ~ )  

(4.56) 

For p = 2 we find m = 0 (no  replica symmetry breaking) if we include in the original 
free energy functional terms up  to q3.  It is only the presence of the quartic terms 
which gives the RSB [ 131. The solution collapses at p = 4, when the cubic term in the 
free energy functional changes sign. Interestingly this coincides with m( t = 0) = 1 ,  
which is the end point of the physical range of variation of the breaking point m. 

The free energy of the spin-glass phase can be found by replacing (4.56) in (4.2), 
and close to the transition it is 

t' + o( t4). 
=24w(4-p)  

Below the transition the free energy is bigger than the free energy of the paramagnetic 
phase. This is a common feature of spin glasses. I t  is related here to the analytic 
continuation n + 0, which involves a negative total number of replica pairs [lo], and 
more generally to the nature of the sc  transition as a blocking transition. 

For p > 4 there is also a spin-glass solution to (4.3) and (4.41, and the transition 
can be located with the accessory condition F,, = FSG which implies mi. = 1 .  The 
transition occurs at 

w2 (P-4I2 < o  t =- 
e 3y (p2-18p+42) ( 4 . 7 ~ )  
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where the order parameter changes discontinuously from 

2w ( 4 - p )  
“=7 ( ~ ’ - 1 8 p i 4 2 )  

(4.76) 

to zero. Although the transition is discontinuous it is not a conventional first-order 
transition. Close to the transition the free energy of the spin-glass phase is 

Only its second derivative is finite at the transition, and  there is no latent heat at t , .  
Technically, as F,, > FpM according to (4.81, any latent heat would have to be negative. 
Kirkpatrick and  Wolynes [5] have argued that the physical reason for this unusual 
behaviour is that the effective number of relevant states into which the system can 
freeze becomes exponentially large when T + T i  because the complexity of the system 
diverges at  that temperature. In  this context it should be realised that, although in a 
Potts system it is easier to satisfy the requirements of conflicting bonds and therefore 
frustration generated by the configurational randomness must play a lesser role than 
in the Ising case, there is, on the other hand, an intrinsic disorder associated with the 
ground-state entropy of Potts antiferromagnets [29] which has to be taken into account. 
Later we will show that this transition, despite the thermodynamic properties discussed, 
does not have the characteristics of a critical point either. 

Before discussing the stability of the solution found it should be pointed out that 
if we assume one more step of replica symmetry breaking (we divide each group of 
m replicas in m / m ‘  subgroups of m’ replicas each, and assume that replicas within a 
subgroup overlap as 0”’ = 4 ’ )  and we look for saddle point solutions for the new 
Hamiltonian with respect to q, q ’ ,  m, m’ some tedious algebra will show there is no 
new solution (beyond the trivial q‘ = 9 or m’ = 1)  near t  = 0. This absence of multistep 
RSB has been found also in the ‘simplest spin glass’ [18]. Furthermore, a solution 
along the lines of the Parisi work [13], where an infinite sequence of nsB levels is 
obtained and  (9,  q ‘ ,  9 ” .  . . ) --* q ( x )  (the order parameter becomes a continuous function 
of the breaking point x), does not exist. A technical reason for this will be presented 
later. 

5. Stability and fluctuations 

To investigate the stability of the solution we write 

02 = q~,,~,,,, + G ( X )  

and expand (2.13) to second order in the fluctuations. The symbol 6G,Gp is one if cy 

and p belong to the same group and zero otherwise. The presence of this ‘group 
Kronecker delta’ greatly simplifies the stability matrix. The only non-vanishing terms 
R : ~ R : :  are: 

( i )  terms where cy, p, y, and v all belong to the same group 
( i i )  terms where cy and  P belong to groups i and j ,  and y and v also belong to 

groups i and j .  
The whole fluctuation matrix factorises in n / m  identical submatrices M,,  of 

dimension t m ( m  - 1)(  p - 1 ) ?  x + m ( m  - 1)(  p - l ) ?  which couple intragroup fluctuations, 
and i ( n / m ) [ ( n / m ) -  13 identical submatrices M2 (of dimension m 2 ( p -  1)’x 
m2( p - 1)’) which couple intergroup fluctuations. The intragroup matrices M2 are 
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exactly the same as the matrix (3.6) found in the replica-symmetric problem, with the 
difference that all the replica indices now run inside one group (between 1 and m )  
and m substitutes n everywhere in the expression (3.6). We can then use the solution 
to the eigenvalue problem found in appendix 2.  The intergroup matrices M2 are 

(5.1) 

The solution to this eigenvalue problem is found in appendix 3. 

5.1. Continuous transition 

In the disordered phase ( 9  =0)  all eigenvalues are -1. The phase is stable in the region 
T > T, and unstable below the transition ( t  > 0), as expected. The behaviour of the 
eigenvalues in the ordered phase is obtained replacing the values of the parameters 
( 4 . 5 b )  in the expressions (A3.3)-(A3.16). Close to the transition the eigenvalues are 

A , , =  t+O(t ' )  ( 5 . 2 a )  

I 
A v R  =-+ o( t ' )  

4 - P  

yr 
2 4 ~ ' ( 4  -p) '  A D R  = A l B  = ( 7 p 2  - 24p + 12)+ 0 ( t 3 ) .  

( 5 . 2 b )  

( 5 . 2 ~ )  

( 5 . 2 d )  

( 5 . 2 e )  

( 5 . 2 i )  

( 5 . 2 J )  

( 5 . 2 k )  

(5.21) 

The eigenvalues ( 5 . 2 a ) - ( 5 . 2 k )  are positive in the range of validity of the solution, 
2 < p < 4 .  The last two families of eigenvectors ( DR and I B )  have positive eigenvalues 
only for p > po * 2.82. It  is in this range po < p < 4 that we have, then, a stable mean-field 
theory with a continuous transition. This result was obtained first in [I]. Their statement 
that the quartic coefficient changes sign at po in the theory with the Parisi simplification 
(where only the most dangerous term - ~ ( q " ~ ) ~  is kept in the effective Hamiltonian 
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(2 .13) ) ,  should be understood in the sense that in that case the soft eigenvalues (AI,R 
and h l R )  are equal to -4 .v t2 /[w ' (4-p) ' ]  and a negative value has to be assigned to 
the constant y (for p > p o )  in order to obtain the correct stability properties. In this 
context it should be noted that it is this change in sign of the quartic coupling which 
plays the crucial role in ruling out a solution with an  infinite number of RSB ( d  la 
Parisi), as can be checked inserting the full Parisi ansatz in the simplified effective 
Hamiltonian. 

The presence of these soft modes indicates that the mean-field solution found 
violates scaling in the conventional sense. The propagators of these soft modes are 
( k'+ A,on) - '  and the corresponding correlations 

have a correlation length that diverges at the transition as <,- l / t ,  with an exponent 
v = 1, while the other modes have the usual mean-field correlation length exponents 

shown before, is the one that destabilises the replica-symmetric solution, and in the 
p = 2 case becomes the massless replicon mode [ 2 2 ] .  It will be shown in a companion 
paper [ 3 0 ]  that this soft mode proves to be a crucial one also for this solution. Indeed, 
as the eigenvalue A D R  is proportional to the quartic coupling 4: which is a dangerous 
irrelevant variable [ 2 3 ]  it will be renormalised by fluctuations for d < 8 ,  and their effect 
will be to change the sign of the eigenvalue, rendering the solution unstable, for certain 
values of p .  The other soft mode ( le ) ,  whose presence is intimately connected to the 
RSB ansatz adopted, is harmless for the continuous transition and it will be shown that 
the fluctuations below d = 8 restore its scaling behaviour at the upper critical dimension 
d =6. 

.=I 2 .  It is interesting that one of these anomalous modes is the D R  mode which, as 

5.2. Discontinuous transition 

As the transition is discontinuous for p > 4, the perturbative approach is valid only 
when qg is small. We can control the approximation by letting p = 4 + ~ ,  E < <  1 (see 
equation ( 4 . 7 b ) ) .  To leading order, 

( 5 . 3 a )  

( 5 . 3 6 )  

in agreement with [ 5 ] .  Using this value in the expressions (A3.3)-(A3.16) of the 
eigenvalues, it is found that all the fluctuations around the ordered phase are finite 
(and  positive). 

Interestingly, a similar feature to the one found in the continuous transition appears. 
All the fluctuation modes are proportional to E to leading order, except for the soft 
modes ( I B )  and  ( D R )  which are proportional to E ? .  There is a third mode ( D B )  which 
is also proportional to E ' .  This is a reflection of the accidental degeneracy between 
the breathing and replicon modes that occurs for m = 1 as table 1 illustrates. 

The finiteness of all the 'perturbative' fluctuations at T, points to the fact that the 
discontinuous transition is not a conventional critical point, i n  spite of the continuity 
of the entropy and the unusual (for a first-order transition) thermodynamic properties, 
as there is no divergence of a correlation length and all the spin-glass susceptibilities 
remain finite. 
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Dynamical studies of the mean-field theory in the soft spin version of this model 
[4] showed the existence of another transition at a temperature TA > T, whose signature 
is a critical slowing down of the kinetic correlations. A similar behaviour is found for 
the discontinuous transition ( p > 2) in the p-spin interactions model. Kirkpatrick and  
Wolynes [ 51, through a Thouless-Anderson-Palmer approach, also found both transi- 
tions in the Potts ( p > 4 )  case, and the dynamical transition appeared there when 
qap = 0 for a # /.3 and only the self-overlap q"" remained. This corresponds to the 
case of maximally broken replica symmetry. In the static approach presented here, 
this transition can be located with the assumption that the variational equation for m 
(equation (4.4)) is not satisfied and m is fixed at its physical end point m (  T = TA) = 1. 
Using this in (4.3), the 
satisfied at 

3 w 2  
t A = - -  

8 Y  

At that temperature, 

variational equation for q, we obtain a solution which is first 

( 5 . 4 a )  

(5.4b) 

The derivation of this expression in the framework of the static perturbative approach 
is questionable since a factor ( 1  - m )  was disregarded in the variational equation, 
despite the fact that we are interested in the m = 1 situation. This shortcoming is 
related to the fact that we are describing a state where no replica overlap remains, and  
the order parameter which describes the transition is a self-overlap which is not present 
in the formalism [4]. Nevertheless, the transition located this way is the same found 
in the dynamical approach and in the TAP approach. 

We can also evaluate the fluctuation eigenvalue at this transition using (5.4) in the 
expressions (A3.3)-(A3.16). 

All the eigenvalues exhibit the same behaviour found at the lower transition at Tg 
with the exception of the (DR) mode and  its degenerate pair ( D B )  which vanish at TA.  
Again the critical mode turns out to be the same as that which was a soft mode at the 
continuous transition and  the replicon mode of the p = 2 problem. So the static 
approach actually exhibits the critical behaviour that was found in the dynamic 
approach. From the variational equation it follows that 

and close to the transition 

A D R  = J  -4tA( t - t A )  (5.6) 
from where a correlation length 6 - ( t  - t A ) - l i 4  is obtained. 

This result is consistent with the picture introduced in [ 5 ] ,  where it is argued that 
between TA and the thermodynamic transition at Tg the system is frozen into a 
metastable state. At the mean-field level the barriers separating the metastable state 
are infinite and  the system undergoes an ergodic to non-ergodic transition. Presumably 
in real glassy systems the barriers are finite; activated transitions between the different 
metastable states would explain the slowing down of the transport properties, and the 
hysteresis and other characteristics of glassy behaviour. It has been noted in this 
context that the presence of a temperature where there is a strong change of the 
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transport properties while the thermodynamic properties change smoothly, is rep- 
resentative of many structural glasses [ 5 ] .  

In conclusion, we recapitulate the main results presented. 
Starting from the Edwards- Anderson random bond Hamiltonian we obtained an  

effective Hamiltonian for the p-state Potts spin glass, keeping exact terms to order 9‘. 
We found the RS solution and checked the stability matrix, showing that the solution 
is unstable to order q for any p > 2. We introduced a simple KSB ansatz, in which the 
replicas overlap maximally or d o  not overlap at all, and found a continuous transition 
for p < 4. We solved the stability matrix which factorises into intragroup and intergroup 
fluctuations and  found that the solution is completely stable for p > p 0 .  While most 
modes are proportional to t, there are soft modes (proportional to t ’ ) ,  and we interpreted 
this as a failure of scaling of the mean-field solution. For p > 4  we found that there 
are two different transitions. The thermodynamic transition is discontinuous but there 
is no latent heat at T g .  All the perturbative fluctuations around it are finite. At a 
higher temperature TA there is another transition found also in the dynamics, where 
one of the variational parameters is fixed at its physical endpoint. At that transition 
one of the soft modes becomes critical. 
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Appendix 1 

All the properties listed below are easily obtained using the definitions (2.10) and the 
relations (2.1)-(2.3) (summation convention is used): 

(Al .1)  
(A1.2) 
(A1.3) 
(A1.4) 
(Al .5)  
(A1.6) 

(Al .7)  

(A1.8) 
(A1.9) 

Appendix 2 

Because of the factorisation of each term of the matrix (3.6) it is natural to look for 
eigenvectors of the form R?: = R Y Y P C d ,  where the R Y Y  are f n ( n  - 1)-dimensional simul- 
taneous eigenvectors of the matrices A, B and C defined in expressions (3.7), and the 



4984 G Cwilich and T R Kirkpatrick 

Pld are ( p  - I)'-dimensional eigenvectors of the Potts matrices 
the diagonal 8 a c 6 h d  ). 

of indices, the antisymmetric vectors 

and 8oh8cd (and  

As the Potts matrices are symmetric with respect to the exchange of the pair (c, d )  

( P A ) t d  = S,.,Sdh,,-S~h~,Sdo,, a,,, b,, = 1, . . . , p - 1 (A2.1 a )  

are eigenvectors with eigenvalue 0. We must look for the other eigenvectors in the 
orthogonal symmetric subspace PCd = Pclc. Using relation ( A I S ) ,  the diagonal tensor 
( P D ) c d  = Scd is an  eigenvector with eigenvalues p (  p - 1)  and  ( p - 1) respectively. Also, 
relations ( A l . l )  and (A1.9) show that the 'Potts vectors' 

( P V I ' d  = t"de e =  1 , .  . . , p - 1  (A2.1 b)  

defined in (2.10) are eigenvectors with eigenvalues p ( p - 2 )  and 0 respectively. The 
remaining family of eigenvectors can be obtained by imposing orthogonality conditions 
to the ones found previously. Each member of this family breaks the symmetry among 
Potts indices by selecting two components, and  they will be called accordingly ( PT)Ld 
('Potts tensor' eigenvectors). Similarly, the (PV)cd chooses one from among the Potts 
components. The expression of the (PT)cd is rather cumbersome and will not be given 
here. We need only to know that their associated eigenvalues are both zero, and that, 
as matrices, they are symmetric and traceless. The degeneracies of the PD, Pv, PT and 
PA eigenvalues are respectively 1, p - 1, t p (  p - 3) and $( p - 1)( p - 2 ) .  

Inserting each solution for the Potts part in the general eigenvalue equation ( 3 . 5 ) ,  
we obtain eigenvalue equations for the replica vectors RuP. The equations obtained 
are linear combinations of 

u,,f h 

i( M " B Y v  * M m B l ' Y )  

where the M matrices are the A, 6, C replica matrices introduced in (3.7). The upper 
sign is obtained when we use the Potts symmetric eigenvectors (Pv, PT, P,) and the 
lower one when we use the antisymmetric ones ( P A ) ,  and thus we look for symmetric 
replica solutions in one  case, and antisymmetric ones in the other, to maintain the 
overall symmetry given by (2.11). In  the first case, the problem is exactly the same as 
that solved by d e  Almeida and Thouless [ 121, and the three families of replica vectors 
found are 

Breathing ( B )  ( A 2 . 2 ~ )  +. RuP = R for all ( a ,  p )  

+RoB{i (2 -n )  ifcu o r p = a ,  C Y ,  = 1, . . . , n 
Anomalous ( A )  (A2.2b) otherwise 

($ (n  - 2 ) ( n  -3) if a p  =(a,,,  Po)  
$ ( 3 - n )  if c u = a o a n d / 3 # p ,  cuo#pO=l,  . . . ,  n Replicon ( R )  --f R"P { or vice versa 

I 1  otherwise. ( A 2 . 2 ~ )  

For the antisymmetric case a slight modification of the de  Almeida-Thouless case is 
found. There are only two families as homogeneous antisymmetric modes d o  not exist: 

A ' +  R"P = S o , ,  - ( A 2 . 3 ~ )  

RI+ R"P = ( S ~ ~ ~ , - S m , , P ) - ( S ~ ~ ~ , , - S B , ~ P ) -  n(S"~,,SPP~,-S~B,,SB~,,) 
(A2.36) 

U " =  1,. . . , n 

a,# P o =  1 , .  . . , n. 
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Table I .  Degeneracies and eigenvalues for each  family of eigenvectors. 

Family Degeneracy Eigenvalue of A EigenLalue of B Eigenvalue of C 

A '  n - l  1 
R '  ( n - l I ( n - 2 )  1 

? ( n - 2 I  
n - 4  

I n - 2 11 n - 3 ) 
-21 tt - 3 I 

- 7  7 

n - 2  0 
- 7  1) 

In table 1 the degeneracy of each family and  the eigenvalues corresponding to the 
three replica matrices A, 6, C are listed. 

We followed here the denomination introduced by Bray and Moore [21]. We obtain 
the different families of eigenvalues by combining the Potts and  replica parts in all 
possible ways. ( P D ,  P v ,  PT) combines with ( B , A , R )  and  leads to nine families 
( DB, DA. DR,  . . . , TR), and  PA combined with ( A , ,  R') provides the last two ( A A ' ,  AR' ) .  

Using the eigenvalue information provided above and in table 1 together with the 
matrix (3.6) all the eigenvalues can be found. For example 

( A 2 . 4 ~ )  

(A2.46) 

( A 2 . 4 ~ )  

= - t  - wq(  p - 2 + 2 ( n  - 2 ) )  + O ( q ' )  

A L I R  = - - t  -  MI^( p -4 )  + O( 4') 

A V , =  - - t  - W q (  p - 5 )  +O(q ' ) .  

Appendix 3 

The matrix (5.1) is diagonal in the Potts indices and its solutions are of the form 

RI;;=6 c r 4 ,  6 d h ,  RY" a,,, 6, = 1, . . . , p - 1. (A3.1) 

The solutions in replica space are similar to the ones found in (A2 .2a ) - (A2 .2~) ,  the 
difference coming from the fact that there is no  symmetry between the two replica 
indices as they run over different sets of values (different groups). The three families 
of solutions are 

Breathing + R U P  = 1 for all cy, P ( A 3 . 2 ~ )  

(A3.26) 

and 

1 - if P =Po P o =  1,. . . , m 
1 otherwise 

( (  1 - m)' if a = cyo and p = p(, 
( 1  - m )  if cy = cyO and p # P o  

or vice versa Replicon + R"@ 

otherwise. ( A 3 . 2 ~ )  
The degeneracies and the corresponding eigenvalues are given in table 2. In this way 
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Table 2. Degeneracies and eigenvalues for the intergroup coupling eigenvectors 

Family Degeneracy Eigenvalue of A Eigenvalue of B Eigenvalue of C 

I3 1 1 2 l m - 1 1  ( m - 1 ) ’  
A 2 ( m - I )  1 m - 2  1 - m  
R ( m - 1 ) ’  1 - 2  1 

we obtain three new intergroup families ( I B ,  I A ,  I R ) .  With all the information provided 
so far we can write the eigenvalues for the eleven intragroup families and the three 
intergroup families to order q 2 .  They are listed below to the order relevant to our  
work and  the corresponding degeneracies are given: 

(A3.3) D B  

l’)  
DA - - t - w q ( m - 4 + p - 2 ) + 0 ( q 2 )  (A3.4) 

(A3.5) 

(A3.6) 

VA - t - w q ( m -  (A3.7) 4 + p - 3) + O( q2)  

(A3.8) (n(m2-3) i P - 1 ) )  

. t  - wq(2m -5)+O(q’)  (A3.9) TB - 

(A3.10) TA 

TR -r+3wq+0(q’) (A3.11) 

(A3.12) 

(n(m2-31 P ( P - 3 )  -1 2 

AA’ - t -  wq(m -3)+O(q’)  

AR’ - t  + 3wq + 0 ( q 2 ’  

(A3.14) 

I A  - . t  - wq( m - 2) + O( q 2 )  (i (2- 1) ( m  - 1 ) ( p  - 1 ) -  ’) (A3.15) 

(E (’- 1) ( m  - 1)’(p - I R  - t + 2 w q + 0 ( q 2 )  
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